
Introduction to Neural Networks

Saeed Reza Kheradpisheh

s kheradpisheh@sbu.ac.ir

Department of Computer Science
Shahid Beheshti University

Summmer 1398

1

Typical ML system

2

Typical ML system

3

Deep Learning system

4

Why Deep Learning Now?

Computing power (GPUs, TPUs, ...)

5

Why Deep Learning Now?

Computing power (GPUs, TPUs, ...)

Data with labels

5

Why Deep Learning Now?

Computing power (GPUs, TPUs, ...)

Data with labels

Open source tools and models

5

Why Deep Learning Now?

Computing power (GPUs, TPUs, ...)

Data with labels

Open source tools and models

Better algorithms & understanding

5

DL Today: Speech-to-Text

6

DL Today:Vision

7

DL Today:Vision

8

DL Today: Natural Language Processing (NLP)

9

DL Today: Natural Language Processing (NLP)

10

DL Today: Vision + NLP)

11

DL Today: Image translation

12

DL Today: Generative models

Sampled celebrities [Nvidia 2017]

StackGAN v2 [Zhang 2017]

13

Biological Neuron

14

Artificial Neuron

Neuron output is a function of the inputs.

Learning occurs by changing the weights to map inputs to
outputs.

Neural networks gain their power by putting together many of
basic computing units.

15

Perceptron

Input vector: X = [x1, ...,xd]

Target output: Y ∈ {−1,+1}
Input weights: W = [w1, ...,wd]

Predicted output: y = sign{W.X}= sign{∑d
i=1 wixi}

16

Perceptron with bias

17

Perceptron with bias

17

Perceptron with bias

17

Perceptron with bias

17

Learning in Perceptrons
Consider a d-dimensional binary classification problem:

Training set: D = {(Xi,Yi)|i = 1 : N}
Training sample: Xi = [Xi1, ...,Xid], Yi ∈ {−1,+1}
Perceptron predicts: yi = sign{W.Xi}
Loss Function:

L = ∑
(Xi,Yi)∈D

(Yi− yi)
2 = ∑

(Xi,Yi)∈D
(Yi− sign{W.Xi})2

Loss function depends on W and D.

As D is given, hence, learning is to find W∗ minimizing the loss
function:

W∗ = argmin
W

∑
(Xi,Yi)∈D

(Yi− sign{W.Xi})2

18

Learning in Perceptrons
Consider a d-dimensional binary classification problem:

Training set: D = {(Xi,Yi)|i = 1 : N}
Training sample: Xi = [Xi1, ...,Xid], Yi ∈ {−1,+1}
Perceptron predicts: yi = sign{W.Xi}
Loss Function:

L = ∑
(Xi,Yi)∈D

(Yi− yi)
2 = ∑

(Xi,Yi)∈D
(Yi− sign{W.Xi})2

Loss function depends on W and D.

As D is given, hence, learning is to find W∗ minimizing the loss
function:

W∗ = argmin
W

∑
(Xi,Yi)∈D

(Yi− sign{W.Xi})2

18

Learning in Perceptrons
Consider a d-dimensional binary classification problem:

Training set: D = {(Xi,Yi)|i = 1 : N}
Training sample: Xi = [Xi1, ...,Xid], Yi ∈ {−1,+1}
Perceptron predicts: yi = sign{W.Xi}
Loss Function:

L = ∑
(Xi,Yi)∈D

(Yi− yi)
2 = ∑

(Xi,Yi)∈D
(Yi− sign{W.Xi})2

Loss function depends on W and D.

As D is given, hence, learning is to find W∗ minimizing the loss
function:

W∗ = argmin
W

∑
(Xi,Yi)∈D

(Yi− sign{W.Xi})2

18

How to find optimum weights?
At any point x = [x1, ...,xd] of a function f , the gradient vector,
Of (x), shows the direction of steepest ascend.

For an arbitrary weight vector, −OwL shows the direction of the
steepest descent of the loss function.

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

Find W∗ by starting from a random weight vector and an iterative
use of gradient:

19

How to find optimum weights?
At any point x = [x1, ...,xd] of a function f , the gradient vector,
Of (x), shows the direction of steepest ascend.
For an arbitrary weight vector, −OwL shows the direction of the
steepest descent of the loss function.

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

Find W∗ by starting from a random weight vector and an iterative
use of gradient:

19

How to find optimum weights?
At any point x = [x1, ...,xd] of a function f , the gradient vector,
Of (x), shows the direction of steepest ascend.
For an arbitrary weight vector, −OwL shows the direction of the
steepest descent of the loss function.

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

Find W∗ by starting from a random weight vector and an iterative
use of gradient:

19

Computing gradients for Perceptron

L =
1
2 ∑
(Xi,Yi)∈D

(Yi− yi)
2

=
1
2 ∑
(Xi,Yi)∈D

(Yi−sign{W.Xi})2

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

∂L
∂wj

=
∂

1
2 ∑(Xi,Yi)∈D(Yi− yi)

2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂yi

∂yi

∂wj

=− ∑
(Xi,Yi)∈D

(Yi− yi)
∂yi

∂wj

20

Computing gradients for Perceptron

L =
1
2 ∑
(Xi,Yi)∈D

(Yi− yi)
2

=
1
2 ∑
(Xi,Yi)∈D

(Yi−sign{W.Xi})2

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

∂L
∂wj

=
∂

1
2 ∑(Xi,Yi)∈D(Yi− yi)

2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂yi

∂yi

∂wj

=− ∑
(Xi,Yi)∈D

(Yi− yi)
∂yi

∂wj

20

Computing gradients for Perceptron

L =
1
2 ∑
(Xi,Yi)∈D

(Yi− yi)
2

=
1
2 ∑
(Xi,Yi)∈D

(Yi−sign{W.Xi})2

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

∂L
∂wj

=
∂

1
2 ∑(Xi,Yi)∈D(Yi− yi)

2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂yi

∂yi

∂wj

=− ∑
(Xi,Yi)∈D

(Yi− yi)
∂yi

∂wj

20

Computing gradients for Perceptron

L =
1
2 ∑
(Xi,Yi)∈D

(Yi− yi)
2

=
1
2 ∑
(Xi,Yi)∈D

(Yi−sign{W.Xi})2

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

∂L
∂wj

=
∂

1
2 ∑(Xi,Yi)∈D(Yi− yi)

2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂yi

∂yi

∂wj

=− ∑
(Xi,Yi)∈D

(Yi− yi)
∂yi

∂wj

20

Computing gradients for Perceptron

L =
1
2 ∑
(Xi,Yi)∈D

(Yi− yi)
2

=
1
2 ∑
(Xi,Yi)∈D

(Yi−sign{W.Xi})2

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

∂L
∂wj

=
∂

1
2 ∑(Xi,Yi)∈D(Yi− yi)

2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂yi

∂yi

∂wj

=− ∑
(Xi,Yi)∈D

(Yi− yi)
∂yi

∂wj

20

Computing gradients for Perceptron

L =
1
2 ∑
(Xi,Yi)∈D

(Yi− yi)
2

=
1
2 ∑
(Xi,Yi)∈D

(Yi−sign{W.Xi})2

OwL = [
∂L

∂w1
...,

∂f
∂wd

]

∂L
∂wj

=
∂

1
2 ∑(Xi,Yi)∈D(Yi− yi)

2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂wj

=
1
2 ∑
(Xi,Yi)∈D

∂(Yi− yi)
2

∂yi

∂yi

∂wj

=− ∑
(Xi,Yi)∈D

(Yi− yi)
∂yi

∂wj

20

Computing gradients for Perceptron
The derivative of the Perceptron’s predicted output is zero everywhere
and is undefined at zero:

yi = sign{W.Xi}= sign{
d

∑
j=1

wjxij}

∂yi

∂wj
=

∂sign{W.Xi}
∂W.Xi

∂W.Xi

∂wj
=

∂sign{W.Xi}
∂W.Xi

xij

Hence, a surrogate gradient is used:

∂yi

∂wj
= xij

Thus we have:
∂L
∂wj

=− ∑
(Xi,Yi)∈D

(Yi− yi)xij

21

Computing gradients for Perceptron
The derivative of the Perceptron’s predicted output is zero everywhere
and is undefined at zero:

yi = sign{W.Xi}= sign{
d

∑
j=1

wjxij}

∂yi

∂wj
=

∂sign{W.Xi}
∂W.Xi

∂W.Xi

∂wj
=

∂sign{W.Xi}
∂W.Xi

xij

Hence, a surrogate gradient is used:

∂yi

∂wj
= xij

Thus we have:
∂L
∂wj

=− ∑
(Xi,Yi)∈D

(Yi− yi)xij

21

Gradient Descent Learning for Perceptron
To find optimum weights (W∗):

Start from a random initial weight vector, W0.

Through an iterative manner, use gradients and update the
weights:

W t+1 = W t +η ∑
(Xi,Yi)∈D

(Yi− yi)Xi

The laerning rate is controled by η.

22

Gradient Descent Learning for Perceptron
To find optimum weights (W∗):

Start from a random initial weight vector, W0.
Through an iterative manner, use gradients and update the
weights:

W t+1 = W t +η ∑
(Xi,Yi)∈D

(Yi− yi)Xi

The laerning rate is controled by η.

22

Gradient Descent Learning for Perceptron
To find optimum weights (W∗):

Start from a random initial weight vector, W0.
Through an iterative manner, use gradients and update the
weights:

W t+1 = W t +η ∑
(Xi,Yi)∈D

(Yi− yi)Xi

The laerning rate is controled by η.

22

Gradient Descent Learning for Perceptron
To find optimum weights (W∗):

Start from a random initial weight vector, W0.
Through an iterative manner, use gradients and update the
weights:

W t+1 = W t +η ∑
(Xi,Yi)∈D

(Yi− yi)Xi

The laerning rate is controled by η.

22

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
1 Shuffle the training set.

2 Compute the perceptron’s outputyi for the i-th sample.
3 Update the weights using W t+1 = W t +η(Yi− yi)Xi.
4 Repeat steps 2 to 3 for all training samples.
5 Jump to step 1 if the totall loss L = ∑(Xi,Yi)∈D(Yi− yi)

2 is below a
certain value or the maximum number of iteration is reached

23

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
1 Shuffle the training set.
2 Compute the perceptron’s outputyi for the i-th sample.

3 Update the weights using W t+1 = W t +η(Yi− yi)Xi.
4 Repeat steps 2 to 3 for all training samples.
5 Jump to step 1 if the totall loss L = ∑(Xi,Yi)∈D(Yi− yi)

2 is below a
certain value or the maximum number of iteration is reached

23

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
1 Shuffle the training set.
2 Compute the perceptron’s outputyi for the i-th sample.
3 Update the weights using W t+1 = W t +η(Yi− yi)Xi.

4 Repeat steps 2 to 3 for all training samples.
5 Jump to step 1 if the totall loss L = ∑(Xi,Yi)∈D(Yi− yi)

2 is below a
certain value or the maximum number of iteration is reached

23

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
1 Shuffle the training set.
2 Compute the perceptron’s outputyi for the i-th sample.
3 Update the weights using W t+1 = W t +η(Yi− yi)Xi.
4 Repeat steps 2 to 3 for all training samples.

5 Jump to step 1 if the totall loss L = ∑(Xi,Yi)∈D(Yi− yi)
2 is below a

certain value or the maximum number of iteration is reached

23

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
1 Shuffle the training set.
2 Compute the perceptron’s outputyi for the i-th sample.
3 Update the weights using W t+1 = W t +η(Yi− yi)Xi.
4 Repeat steps 2 to 3 for all training samples.
5 Jump to step 1 if the totall loss L = ∑(Xi,Yi)∈D(Yi− yi)

2 is below a
certain value or the maximum number of iteration is reached

23

SGD

24

Initial weights matter

25

Learning rate matters

26

Perceptron solves linearly separable problems

27

The XOR problem

28

Multi Layer Perceptron (MLP)

29

Forward propagation

ah(x) = Wh.x+bh

30

Forward propagation

ah(x) = Wh.x+bh

h(x) = Φ(ah(x)) = Φ(Wh.x+bh)

30

Forward propagation

ah(x) = Wh.x+bh

h(x) = Φ(ah(x)) = Φ(Wh.x+bh)

ao(x) = Wo.h(x)+bo

30

Forward propagation

ah(x) = Wh.x+bh

h(x) = Φ(ah(x)) = Φ(Wh.x+bh)

ao(x) = Wo.h(x)+bo

f (x) = Φ(ao(x)) = Φ(Wo.h(x)+bo)

30

Forward propagation

ah(x) = Wh.x+bh

h(x) = Φ(ah(x)) = Φ(Wh.x+bh)

ao(x) = Wo.h(x)+bo

f (x) = Φ(ao(x)) = Φ(Wo.h(x)+bo)

30

Multilayer Network as a Computational Graph

A multilayer network evaluates compositions of functions
computed at individual nodes:

f (g1(.), ...,gk(.)) (1)

The use of nonlinear activation functions is the key to increase
the power of multiple layers.

A network with a single hidden layer of nonlinear units can
compute almost any reasonable function.

The number of hidden units required to do so is rather large,
which increases the number of parameters to be learned.

31

Multilayer Network as a Computational Graph

A multilayer network evaluates compositions of functions
computed at individual nodes:

f (g1(.), ...,gk(.)) (1)

The use of nonlinear activation functions is the key to increase
the power of multiple layers.

A network with a single hidden layer of nonlinear units can
compute almost any reasonable function.

The number of hidden units required to do so is rather large,
which increases the number of parameters to be learned.

31

Multilayer Network as a Computational Graph

A multilayer network evaluates compositions of functions
computed at individual nodes:

f (g1(.), ...,gk(.)) (1)

The use of nonlinear activation functions is the key to increase
the power of multiple layers.

A network with a single hidden layer of nonlinear units can
compute almost any reasonable function.

The number of hidden units required to do so is rather large,
which increases the number of parameters to be learned.

31

Multilayer Network as a Computational Graph

A multilayer network evaluates compositions of functions
computed at individual nodes:

f (g1(.), ...,gk(.)) (1)

The use of nonlinear activation functions is the key to increase
the power of multiple layers.

A network with a single hidden layer of nonlinear units can
compute almost any reasonable function.

The number of hidden units required to do so is rather large,
which increases the number of parameters to be learned.

31

The Power of Function Composition

A multi-layer network that uses only the identity activation function in
all its layers reduces to a single-layer network performing linear
regression.

32

Element-wise Activation Functions
Sign function: Φ(a) = sign(a)
Sigmoid function: Φ(a) = 1

1+e−a

Tangh function: Φ(a) = e2a−1
e2a+1

ReLU: Φ(a) = max{a,0}
Hard Tangh:
Φ(a) = max{min[v,1],−1}

33

Dervation of Activation Functions

34

Dervation of Activation Functions

Assume o = Φ(v) thus we have:

35

Groupe Activation: Softmax function

softmax(x) =
1

∑
n
i=1 exi

·


ex1

...

exn



Softmax activation for each neuron is in range [0,1] .
The summation of neurons’ activation is 1.
It is ususally used in the output layer.

36

Groupe Activation: Softmax function

softmax(x) =
1

∑
n
i=1 exi

·


ex1

...

exn


Softmax activation for each neuron is in range [0,1] .

The summation of neurons’ activation is 1.
It is ususally used in the output layer.

36

Groupe Activation: Softmax function

softmax(x) =
1

∑
n
i=1 exi

·


ex1

...

exn


Softmax activation for each neuron is in range [0,1] .
The summation of neurons’ activation is 1.

It is ususally used in the output layer.

36

Groupe Activation: Softmax function

softmax(x) =
1

∑
n
i=1 exi

·


ex1

...

exn


Softmax activation for each neuron is in range [0,1] .
The summation of neurons’ activation is 1.
It is ususally used in the output layer.

36

Dervation of the Softmax Function

Assume oi = softmax(vi) thus we have:

∂oi

∂vj
=

{
oi · (1−oi) i = j
−oi ·oj i 6= j

37

Error Backpropagation
Consider a sequence of hidden units followed by an output unit.
To update any weight of the output layer, we use the gradient of
the loss function with respect to that weight.
Consider the Loss Function to be L(X) = 1

2(Y−o)2

38

Error Backpropagation

Consider a sequence of hidden units followed by an output unit.

To update a connection weight, we should compute the gradient
of the loss function with respect to that weight.

39

Error Backpropagation

Now consider a sequence of hidden layers followed by an output
unit (P is the set of paths from hrto o):

40

Error Backpropagation

41

Error Backpropagation

41

Error Backpropagation

41

Error Backpropagation

ah = Wh.hr = ∑
j

w
(hj

r,h)
hj

r

h = Φ(ah) = Φ(∑
j

w
(hj

r,h)
hj

r)

42

Error Backpropagation

43

Error Backpropagation

44

Error Backpropagation

44

Error Backpropagation

44

SGD using Backpropagation

For each training sample:

Compute the forward path.

Compute ∆(o,o) for each output neuron.

Update each connecting weight of the output layer as

For r = k,k−1, ...,1:

Compute ∆(hi
r,o) for the i-th neuron at the r-th hidden layer.

Update each connecting weight of the i-th neuron at the r-th
hidden layer as:

45

MLP example

46

MLP example

46

MLP example

46

MLP example

46

MLP example

46

MLP example

46

learning slowdown issue for sigmoid and tangH
The derivation of sigmoid and tangH is near zero for small and large
pre-activations. This slows down the learning speed.

Solutions:

Use ReLU activation function.

Do weight and input normalization.

47

Momentum

Add a fraction (α=momentum) of the last change to the current
change:

∆wij = η.∆i.xj.Φ
′(ai)+α.∆wij

48

Overfitting

Generalization: To establish a balance between correct
responses for the training patterns and unseen new patterns.
Memorization: When the model momorizes training samples
instead of learning the descriptive common patterns.
Overfitting: Weak generalization. It happens when the network
complexity is more than the problem complexity.

In neural networks, the model complexity is specified by the
number of neurons and weights.

49

Overfitting

Generalization: To establish a balance between correct
responses for the training patterns and unseen new patterns.
Memorization: When the model momorizes training samples
instead of learning the descriptive common patterns.
Overfitting: Weak generalization. It happens when the network
complexity is more than the problem complexity.
In neural networks, the model complexity is specified by the
number of neurons and weights.

49

Overfitting

Overfitting: fitting a model to a particular training data set does
not guarantee good prediction performance on unseen test data.

If you train the net for too long, then you run the risk of overfitting.

Lack of sufficient training data increases the risk of overfitting.

Example: consider a single neuron with 5 inputs and the following
training set:

50

Overfitting

Overfitting: fitting a model to a particular training data set does
not guarantee good prediction performance on unseen test data.

If you train the net for too long, then you run the risk of overfitting.

Lack of sufficient training data increases the risk of overfitting.

Example: consider a single neuron with 5 inputs and the following
training set:

50

Overfitting

Overfitting: fitting a model to a particular training data set does
not guarantee good prediction performance on unseen test data.

If you train the net for too long, then you run the risk of overfitting.

Lack of sufficient training data increases the risk of overfitting.

Example: consider a single neuron with 5 inputs and the following
training set:

50

Avoid Overfitting

One possible approach is to reduce the size of the network.
However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).

Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.

use random dropout technique for hidden neurons.

51

Avoid Overfitting

One possible approach is to reduce the size of the network.
However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).

Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.

use random dropout technique for hidden neurons.

51

Avoid Overfitting

One possible approach is to reduce the size of the network.
However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).

Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.

use random dropout technique for hidden neurons.

51

Avoid Overfitting

One possible approach is to reduce the size of the network.
However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).

Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.

use random dropout technique for hidden neurons.

51

Avoid Overfitting

One possible approach is to reduce the size of the network.
However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).

Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.

use random dropout technique for hidden neurons.

51

Avoid Overfitting

One possible approach is to reduce the size of the network.
However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).

Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.

use random dropout technique for hidden neurons.

51

Regularization

Since a larger number of parameters causes overfitting, a natural
approach is to constrain the model to use fewer non-zero
parameters.

The most applied regularization is adding the penalty λ||W|| to
the loss function .

L =
1
2
(Y− y)2 +λ||W||

Therefore the learnin rule is re-written as:

∆wij = η.∆i.xj.Φ
′(ai)−η.λ.wij

52

Early stopping method of training
Split training samples into a training set (80%) and a validation
set (20%).

Stop learning when the loss decreases on train set but increases
on validation set.

53

Dropout or Dropconnect
Temporarily inactivate some of the hidden layer neurons
(Dropout) or some of their weights(Dropconnect).

These methods act like training multiple network inside one
network (to decrease overfitting and increase genralization)

54

The Vanishing and Exploding Gradient

While increasing depth often reduces the number of parameters,
the chain rule can cause in vanishing or exploding gradients.

A sigmoid activation often encourages the vanishing gradient
problem, because its derivative is less than 0.25.

A ReLU activation unit is known to be less likely to create a
vanishing gradient problem because its derivative is always 1 for
positive values of the argument.

Adaptive learning rates and conjugate gradient methods are
other solutions.

55

Importance of Learning Rate

56

Learning mode

There are two basic modes of updating weights:
The pattern mode in which weights are updated after the
presentation of a single training pattern,

It is easier to fit into memory.
For larger datasets it can converge faster.
Due to frequent updates the steps taken towards the minima of
the loss function have oscillations which can help getting out of
local minimums.

The batch mode in which weights are updated after a batch of
patterns.

Less oscillations and noisy steps taken towards the global minima.
It can benefit from vectorization which increases the speed of
processing.
It produces a more stable gradient descent convergence.

57

