—
3o

@
*

;O‘»
3o

Introduction to Neural Networks

Saeed Reza Kheradpisheh

s_kheradpisheh@sbu.ac.ir

Department of Computer Science
Shahid Beheshti University
Summmer 1398

Typical ML system

Feature
Extractions

Classification

Data Supervised
independent Learning

Typical ML system

Feature R
Extractions Classification 9@6

cd

Data Supervised
independent Learning

Deep Learning system

» B BB -

Supervised
Learning

Why Deep Learning Now?

@ Computing power (GPUs, TPUs, ...)

Why Deep Learning Now?

@ Computing power (GPUs, TPUs, ...)

@ Data with labels

performance

deep learning
T

other learning

amount of data

Why Deep Learning Now?

@ Computing power (GPUs, TPUs, ...)
@ Data with labels
@ Open source tools and models

f theano EMﬁii'K
PYTORCH Same finet

gensim spaCy

Why Deep Learning Now?

@ Computing power (GPUs, TPUs, ...)
@ Data with labels

@ Open source tools and models

@ Better algorithms & understanding

DL Today: Speech-to-Text

ot English
audio
o) (o) (@] Q)
o| [o||o] ol 4
. 3
gl|o| |o| |o of| |2
gl o] |o| |o ol le
1 o 5l lo] |o| |0 ol [o
3| |e]|o| |o of| |%
o [o||o] oz
S o) lo] o) °
Mandarin
Input
audio
b
o) (o) (@] o [
o |o| |0 o
E
i 81910 1° °
gl o] |o| |o of|o
HIRIRIS ol [5
3| |e||o| |o o
o| [o||o!)
o) lo] o) o| |2
&

© Convolution Layer
@ Recurrent Layer
© Fully Connected Layer

[Baidu 2014]

Output
text

CAT

Output
text

DL Today:Vision

A
S AEACIN X G ENE VR
4R AR R TIR
FRmIBA K AT
Y I
motor scooter % § }’3\ jﬁ %‘J Ij TT f[ﬁ "j
blnckwi’;:: i ‘Wﬁ —Z X P “ﬁ'\#— E " i QZ g
ek E 4 E AR R 9 &
starfish| __drilling platform golfcart Egyptian cat nE SR HE Y Bt d

[Krizhevsky 2012] [Ciresan et al. 2013]

[Faster R-CNN - Ren 2015] [NVIDIA dev blog]

DL Today:Vision

(¢) benign

[Stanford 2017] [Nvidia Dev Blog 2017]

ation and Pose invariance.

[FaceNet - Google 2015]

[Facial landmark detection CUHK 2014]

DL Today: Natural Language Processing (NLP)

The stratosphere extends from about .
10km to about 50km in altitude ‘ ‘
Translate *
ey P e R N e ... | =TS ‘ ‘ ®
deep learning * l'apprentissage en profondeur %
L .
oo s | % @O < 'u
Seealso
coop, eaming

[Google Translate System - 2016]

the end @ o)
enjoyed @f)\@

v ©

the lecture

(© X @\
The o 5
0 10)
(0
first O/y Ney
0 0
=/

fifteen minutes

[Socher 2015]

DL Today: Natural Language Processing (NLP)

Salit Kulla
y tome

Hey, Wynton Marsalis is playing this weekend. Do
you have a preference between Saturday and Sunday?

S

I'm fine with

S8 whatever
LN
=Y
Reply [N
[Google Inbox Smart Reply] [Amazon Echo / Alexa]

DL Today: Vision + NLP)

“man in black shirt is playing "construction worker in orange "two young girls are playing with "boy is doing backflip on
qguitar. safety vest is working on road. lego toy." wakeboard."

[Karpathy 2015]

DL Today: Image translation

[DeepDream 2015] [Gatys 2015]

original bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dB/0.7777) (20. 34dBIO 6562)

[Ledig 2016]

DL Today: Generative models

Sampled celebrities [Nvidia 2017]

StackGAN v2 [Zhang 2017]

This bird is The bird has
This bird is This bird has A white bird white, black, small beak,
blue with white wings thatare withablack andbrownin with reddish
description and has a very brown and has crown and color, with a brown crown
short beak aycllowbelly yellowbesk brownbeak and gray belly
Stage-T
images :
Stage-11
images

“This is a small,
black bird with
awhite breast
and white on
the wingbars.

This bird is
white black and
yellow in color,
with a short
black beak

Biological Neuron

nucleus

A
v electrical
signal

dendrites

Artificial Neuron

DENDRITES WITH
() SYNAPTIC WEIGHTS

@ Neuron output is a function of the inputs.

@ Learning occurs by changing the weights to map inputs to
outputs.

@ Neural networks gain their power by putting together many of
basic computing units.

Perceptron

INPUT NODES X W.X>0 W.X=0
X, 2 w
+ 4+
X + *
> =’Ow\‘ OUTPUT NODE +
+
W, — —
X3 y + W.X<0
X, _ - =
Xs (0,0) X4

@ Input vector: X = [x1,...,x4]

@ Targetoutput: Y € {—1,+1}

@ Input weights: W = [wy,...,wq]

e Predicted output: y = sign{W.X} = sign{Y% , wix;}

Perceptron with bias

INPUT NODES

X4

INPUT NODES

Perceptron with bias

X4

Perceptron with bias

INPUT NODES

e W.X=0

X4

Perceptron with bias

INPUT NODES

X4

Learning in Perceptrons
Consider a d-dimensional binary classification problem:
@ Training set: D = {(X;,Y;)|i=1:N}
@ Training sample: X; = [Xi1,...,Xi4], Yi € {—1,+1}
@ Perceptron predicts: y; = sign{ W .X;}
@ Loss Function:

L=) (Yi—yi)?* =) (Y; — sign{W.X;})*

(Xi,Yl')ED (X,',Yi)GD

Learning in Perceptrons
Consider a d-dimensional binary classification problem:

@ Training set: D = {(X;,Y;)|i=1:N}

@ Training sample: X; = [Xi1,...,Xi4], Yi € {—1,+1}
@ Perceptron predicts: y; = sign{ W .X;}

@ Loss Function:

L=) (Yi—yi)?* =) (Y; — sign{W.X;})*

(Xi,Yl')ED (X,',Yl')GD

@ Loss function depends on W and D.

Learning in Perceptrons
Consider a d-dimensional binary classification problem:
@ Training set: D = {(X;,Y;)|i=1:N}
@ Training sample: X; = [Xi1,...,Xi4], Yi € {—1,+1}
@ Perceptron predicts: y; = sign{ W .X;}
@ Loss Function:

L=) (Yi—yi)?* =) (Y; — sign{W.X;})*

(Xi,Yl')ED (X,',Yi)GD

@ Loss function depends on W and D.

@ As D is given, hence, learning is to find W* minimizing the loss
function:

W*=argmin Y’ (Y; — sign{W.X;})?
W (X.Y,)eD

How to find optimum weights?

@ At any point x = [x1,...,x,4] of a function f, the gradient vector,
Vf(x), shows the direction of steepest ascend.

How to find optimum weights?
@ At any point x = [x1,...,x,4] of a function f, the gradient vector,
Vf(x), shows the direction of steepest ascend.

@ For an arbitrary weight vector, —V,,L shows the direction of the
steepest descent of the loss function.

oL o

]

How to find optimum weights?

@ At any point x = [x1,...,x,4] of a function f, the gradient vector,
Vf(x), shows the direction of steepest ascend.

@ For an arbitrary weight vector, —V,,L shows the direction of the
steepest descent of the loss function.

oL o

]

@ Find W* by starting from a random weight vector and an iterative
use of gradient: y

Initial

weight \\

L{w)

1

I Gradient

Global cost minimum

_— Lmin(w)

Computing gradients for Perceptron

INPUT NODES

X, =OW\ OUTPUT NODE
w.

20

INPUT NODES

X, =OW\‘ OUTPUT NODE
w.

Computing gradients for Perceptron

L
VoL =]

an .

Jf

owy

20

Computing gradients for Perceptron

xINPUT NODES V.l [87[1 ai]

' v owy T owy

Xz w, OUTPUT NODE

x3=ow\‘ v oL 95 X x.vyen(Yi—yi)?
E)wj aWj

1
L= 5 Z (Yl y,)z
(X,‘,Y,‘)ED
1) 5
=5 Z (Y;—sign{W.X;})

20

Computing gradients for Perceptron

INPUT NODES v L B [aL af]
1 whk = an ...,aWd
Xy =Ow\‘ OUTPUT NODE
*s = y oL a%Z(X,-,Yi)eD(Yi*yz')z
aWj B aWj
. _1 Yy oYi—yi)?
2 (Xi,yi)ED aW]
! 2
L=3) (Yi—y)
(X,‘,Y,‘)ED
1) s
=5 Y (Yi-sign{W.X;})

20

INPUT NODES

Computing gradients for Perceptron

OUTPUT NODE

1
L= 5 Z (Yi yl)2
(X,‘,Y,‘)ED
1) 5
=5 Z (Y;—sign{W.X;})

oL o

ow; " dwg
B 03 Y (x. vyen (Yi — yi)?
a aWj

o(Y; —yi)?
aWj

VL=

]

oL

1 o(Yi —yi)* dyi
25 a9y

E)wj

Computing gradients for Perceptron

INPUT NODES

X, =Ow\‘ OUTPUT NODE
W.

oL of

wL = | iy
Y [3w1 owy

]

oL _ a% Z(Xth)GD(Yi —i)?

aWj
oYi—yi)?

aWj

1 o(Yi —yi)? dyi
2 x a)’i

aWj

a)’i

8wj

= (Yi —i)

20

Computing gradients for Perceptron
The derivative of the Perceptron’s predicted output is zero everywhere
and is undefined at zero:

d
yi = sign{W.X;} = sign{) wix;;}
j=1
dy; Osign{W.X;} oW.X; dsign{W.X;}
w, 0 - i
wj W.X,' aWj BWX,

21

Computing gradients for Perceptron

The derivative of the Perceptron’s predicted output is zero everywhere
and is undefined at zero:

d
yi = sign{W.X;} = sign{) wix;;}
j=1

dy; Osign{W.X;} OW.X; asign{W.Xi}x_'

aWj B E)WXL aWj BWX, Y

Hence, a surrogate gradient is used:

= xij

aw;
Thus we have:

5= (¥ —i)xij
(X,',Y,')ED

21

Gradient Descent Learning for Perceptron
To find optimum weights (W*):
@ Start from a random initial weight vector, W°.

22

Gradient Descent Learning for Perceptron
To find optimum weights (W*):
@ Start from a random initial weight vector, W°.
@ Through an iterative manner, use gradients and update the
weights:
Wt+1 — Wt+n Z (Yi—)’i)xi
(X;,Y;)€D

22

Gradient Descent Learning for Perceptron
To find optimum weights (W*):
@ Start from a random initial weight vector, W°.
@ Through an iterative manner, use gradients and update the
weights:
Wt+1 — Wt+n Z (Yi—)’i)xi
(X;,Y;)€D

@ The laerning rate is controled by 1.

22

Gradient Descent Learning for Perceptron
To find optimum weights (W*):
@ Start from a random initial weight vector, W°.
@ Through an iterative manner, use gradients and update the
weights:
Wt+1 — W’+T1 Z (Yi—)’i)xi
(X;,Y;)€D

@ The laerning rate is controled by 1.
4

L{w) Initial ! _— Gradient

1
I
)
1

Global cost minimum

_— Lmin(w)

22

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
@ Shuffle the training set.

23

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
@ Shuffle the training set.
@ Compute the perceptron’s outputy; for the i-th sample.

23

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
@ Shuffle the training set.
@ Compute the perceptron’s outputy; for the i-th sample.
@ Update the weights using W' = W/ +n(Y; — y;)X..

23

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
@ Shuffle the training set.
@ Compute the perceptron’s outputy; for the i-th sample.
@ Update the weights using W' = W/ +n(Y; — y;)X..
© Repeat steps 2 to 3 for all training samples.

23

Stocastic Gradient Descent (SGD) for Perceptron

In SGD, learning is performed sample by sample:
@ Shuffle the training set.
@ Compute the perceptron’s outputy; for the i-th sample.
@ Update the weights using W' = W/ +n(Y; — y;)X..
© Repeat steps 2 to 3 for all training samples.

© Jump to step 1 if the totall loss L = ¥ x, y,ep(Y: — ;)% is below a
certain value or the maximum number of iteration is reached

23

SGD

th ..
n decision plane

-nemx(n) =1

win)
Y=1
e=+1

e=0 True decision plane

=-1
x(n)
=-1 e=0
e(n)=Y(n)-y(n)

24

L(w)

Initial weights matter

Local opt
Global opt.

|
|
|
wO W

25

Learning rate matters

Too low Just right Too high
LW) LW) LW) r\
—
w w
A small learning rate learning

requires many updates
before reaching the
minimum point

rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

26

Perceptron solves linearly separable problems

LINEARLY SEPARABLE NOT LINEARLY SEPARABLE

+ *
+ + + * *
+ + *

*
++ *
<+
<+
* *
Fx Yo
* ** + +
* * + +

27

The XOR problem

XOR Problem
H

Training Data

£ 5 LL’ .

)) @@’5 A single perceptron can only
o | o o x5 solve linear problems.

:?,)P
1 0 1 1@ » XOR Gate
OR gabe
[1] 1 1
1 1 (1]
o ®

Multi-layer perceptron can solve
non-linearly separable problems.

28

Multi Layer Perceptron (MLP)

Inpur level
| hidden
Output level

level

29

Forward propagation

30

Forward propagation

0-:; 'f == ,‘-' ho
_ A
TN
(l.?f -1 I\\—/ . /'I h! 1—
at(x) h(x)

o d"(x)=W'x+bh
o h(x) = ®(d"(x)) = P(W"x+b")

30

Forward propagation

by T\j\’\\-\——.,__('z

o d"(x)=W'x+bh
o h(x) = ®(d"(x)) = P(W"x+b")
@ a’(x) = W°.h(x)+b°

30

Forward propagation

g fo
Qe freaa
a’(x) f(x)

o d"(x)=W'x+bh
e h(x) = ®(d"(x))
@ a’(x) = W°.h(x)
° f(x) = P(a’(x))

O(W".x+bh)
bo
D(W°.h(x) +b°)

[|

30

Forward propagation

—. by
% If:f\f“ ho fe——u
N N (z
/ P
. we
- (x
am (_;} h, | (/
— W
a(x) h(x)
Wh x+b"
=D(W'x+0")
+b°

ag fo
Q1 frea
a”(x) £(x)

30

Multilayer Network as a Computational Graph

@ A multilayer network evaluates compositions of functions
computed at individual nodes:

f(81()s s 8k())

31

Multilayer Network as a Computational Graph

@ A multilayer network evaluates compositions of functions
computed at individual nodes:

f(81()s s 8k()) (1)

@ The use of nonlinear activation functions is the key to increase
the power of multiple layers.

31

Multilayer Network as a Computational Graph

@ A multilayer network evaluates compositions of functions
computed at individual nodes:

f(81()s s 8k()) (1)

@ The use of nonlinear activation functions is the key to increase
the power of multiple layers.

@ A network with a single hidden layer of nonlinear units can
compute almost any reasonable function.

31

Multilayer Network as a Computational Graph

A multilayer network evaluates compositions of functions
computed at individual nodes:

f(81()s s 8k()) (1)

The use of nonlinear activation functions is the key to increase
the power of multiple layers.

A network with a single hidden layer of nonlinear units can
compute almost any reasonable function.

The number of hidden units required to do so is rather large,
which increases the number of parameters to be learned.

31

The Power of Function Composition

A multi-layer network that uses only the identity activation function in
all its layers reduces to a single-layer network performing linear
regression.

hho=oWiz) =wlz
I <IJ(Hp+th = Up Vo Yped{llih—1}
a=d(W/L hy) =W hy
o=wrL wlh wlz
= (WL W)t E

wi,

32

Element-wise Activation Functions

Sign function: ®(a) = sign(a) ReLU: ®(a) = max{a,0}

SlngId fUﬂCtIOﬂZ (P(a) — 1_'_% Hard Tangh-

Tangh function: ®(a) = iiZ;} ®(a) = max{min|v,1],—1}
) ‘(a)“l(l(c‘ut;)t)" . (h) Slgu o ‘” (() Sig.:,m()i(‘l

(d) ’I;anh (e) ReLU (f) Hard Tanh

33

Dervation of Activation Functions

D

(a) Identity

(b) Sign

(c) Sigmoid

AN

" (d) Tanh

(@ ReLU

(f) Hard Tanh

34

Dervation of Activation Functions

Assume o = ®(v) thus we have:

Sigmoid function: Tangh function:
do _ exp(—v) Jo 4-exp(2v)
ov (1 +exp(—v))2 ov (exp(2v) + 1)2
0o do 2
%:0(1—0) %—1—0

35

Groupe Activation: Softmax function

et

1
et

softmax(x) =

36

Groupe Activation: Softmax function

1
X x
i—1€"
e

softmax(x) =

@ Softmax activation for each neuron is in range [0,1] .

36

Groupe Activation: Softmax function

1
X x
i—1€"
e

softmax(x) =

@ Softmax activation for each neuron is in range [0,1] .
@ The summation of neurons’ activation is 1.

36

Groupe Activation: Softmax function

1
X x
i—1€"
e

softmax(x) =

@ Softmax activation for each neuron is in range [0,1] .
@ The summation of neurons’ activation is 1.
@ It is ususally used in the output layer.

h
b

[:_/_:'\ o ~
A — T)
Iy Y | E‘ alx), &
AN /&/ ~— £
N 5
O) d |
PN - NS
()| | £
N -

Dervation of the Softmax Function

Assume o; = softmax(v;) thus we have:

do; {Oi' (1-0) i=j

W | oo [#]

37

Error Backpropagation

@ Consider a sequence of hidden units followed by an output unit.

@ To update any weight of the output layer, we use the gradient of
the loss function with respect to that weight.

e Consider the Loss Function to be L(X) = (Y —0)?

W(hy,,0)
(=)~ —0)
oL oL 0 &
Ow(n, o) " 90 8w(ohk,o) = Aor0): - B(a0)
Ao,0) = ?’“)_i = -(Y-0)
do do 0a,

= = h . Q)/ a
dwn,.0) da, Ow(n, o) K (a0)

38

Error Backpropagation

@ Consider a sequence of hidden units followed by an output unit.

@ To update a connection weight, we should compute the gradient
of the loss function with respect to that weight.

W(hy_1,hr)

—O—O - D - OO

OL 9L [o Tp Ohi| b,
ohy, 1 "on,

aw(hrflvhr) - % aw(hrflahr)

39

Error Backpropagation

@ Now consider a sequence of hidden layers followed by an output
unit (P is the set of paths from A,to 0):

oL OL do T Ohis ohl
aw(hi_hhi) [hz-,h,.+1,...hk,o]€79 bo 8hk i=r 6h1 aw(hiflvh'i)

J _ oL
Alhr, 0) = an’.

40

Error Backpropagation

41

Error Backpropagation

41

Error Backpropagation

41

Error Backpropagation

a, = Wy.h, = Zw(hf;,h)h]’
j
h=®(ay) = CID(Zw(h,;Vh)h’,)
J

oh . oh) 8ah . 3<I>(ah)
6h§n N 8ah 8hlr N 8ah

Oh__ _ Oh dan
Owminy Odap, OWmin

“w(pi py = ' (an) - Wi)

CI)'(ah) . hi

42

Error Backpropagation

43

Error Backpropagation

oL OL 9o T Ohits Ohi
(9’LU(; - hl) [h’f- Rpt1,...hi,0]EP do ahk i=r ah'b 8’[1)(;&_1,;,1)
7o) = oL
A(h'l'»O) - ah‘;

44

Error Backpropagation

oL OL 9o T Ohits Ohi
(9’LU(; - hl) [h’f- Rpt1,...hi,0]EP do ahk i=r ah'b 8’[1)(;&_1,;,1)
7o) = oL
A(h'l'»O) - ah‘;

Oh.

=R - D (i
Qo niy)

44

Error Backpropagation

oL AL do T Ohip Ohi
8w(hi—1,h{) [hz.,h7.+1,...hk,o]€77 0o Ohy i oh; 811)(}&_1,”1)
J y— oL
A(h'l'»O) - ah‘;
oh} ; ,
= hy 1 - ®'(an)
QWi)
6L i i .
= A(ht,0) - hy_1 - @ (api)
aw(h'r 17)

44

SGD using Backpropagation

For each training sample:
@ Compute the forward path.
@ Compute A(0,0) for each output neuron.
@ Update each connecting weight of the output layer as

W(hy,,0) = W(h,,0) +1]-Alo,0)- hy, - (I)/(ao)

@ Forr=kk—1,....1:

o Compute A(hl,0) for the i-th neuron at the r-th hidden layer.
e Update each connecting weight of the i-th neuron at the r-th
hidden layer as:

W(hy—1,he) = W(h,_y b)) + 1Ay, 0) - By - P (ap,)

45

MLP example

Activation Function

-1
1+e’

fly)

Training Data

Inputs

Target Concept

46

MLP example
7

O, :O(Z"ani) =0(W,,.1+ W, X, +W;, X,)

=)
0, =0()W, X,) =O(W,,.1+W, X, +W,, X)
i=0

0, :O(ZWBiXi) =O(W;,.1+ W, X, +W,, X ,)
i=0

46

MLP example
1

Ii~7i

0, :O(ZW 0;) =O(W;,.1+W,,0, +W;,0, +W;0;)
i=0

OH :O(Z ‘,vHioi) :O(WHO‘1+WHIOI +WHZOZ +WHSOS)

i=0

46

MLP example
1

AI:(II_OI) Wi =Wy +nA, Wioe=WyetnAy
A :(t -0) WIl:WH"'r]AIOI W111=W111+’7A1101
jig 11 1 W .=W.+nA.O W =W. +nA. O
12 ntnaY, 2 ntni,uU,
W13:W13+r’AlO3 W113:W113+UAHO3

46

MLP example
1

46

MLP example

W,=W,+1A,X,0,(1-0,) W, =W,+nA,X,0,(1-0,)
W, =W, +nA,X,0,(1-0,) W, =W, +1A,X,0,(1-0,)
W12:W12+nA1XZO1(1_Ol) WU:WZZ'H’AZXZOZ(I_OZ)

on:Wm"'nAquOa(1_03)
W31:W31+nA3X303(1_01)
W32:W32+UA3X303(1_O3)

46

learning slowdown issue for sigmoid and tangH

The derivation of sigmoid and tangH is near zero for small and large
pre-activations. This slows down the learning speed.

) /
00

() = - o) = S] 0
sigm(z) = ——— anh(z) = ——— elu(z) = max(0.
g = tanh(x) o relu(z) = max(0, z)
sigm’ () = sigm(x)(1 — sigm(x)) tanh’(z) = 1 — tanh(z)? relt’(z) = Lo
Solutions:

@ Use RelU activation function.
@ Do weight and input normalization.

47

Momentum

Add a fraction (ai=momentum) of the last change to the current
change:
AW,'J' = T].A,-.xj.d)'(ai) + (X.Awij

N / Y/

48

Overfitting

x x M=1 1 M =3 1 M =10
N‘ 0 x\ X 0
x x
x

x

0 1 0 1 0

@ Generalization: To establish a balance between correct
responses for the training patterns and unseen new patterns.

@ Memorization: When the model momorizes training samples
instead of learning the descriptive common patterns.

@ Overfitting: Weak generalization. It happens when the network
complexity is more than the problem complexity.

49

Overfitting

x x M=1 1 M =3 1 M =10
N‘ 0 x\ X 0
x x
x

x

0 1 0 1 0 1

@ Generalization: To establish a balance between correct
responses for the training patterns and unseen new patterns.

@ Memorization: When the model momorizes training samples
instead of learning the descriptive common patterns.

@ Overfitting: Weak generalization. It happens when the network
complexity is more than the problem complexity.

@ In neural networks, the model complexity is specified by the

number of neurons and weights.
49

Overfitting

@ Overfitting: fitting a model to a particular training data set does
not guarantee good prediction performance on unseen test data.

@ If you train the net for too long, then you run the risk of overfitting.

50

Overfitting

@ Overfitting: fitting a model to a particular training data set does
not guarantee good prediction performance on unseen test data.

@ If you train the net for too long, then you run the risk of overfitting.

@ Lack of sufficient training data increases the risk of overfitting.

50

Overfitting

@ Overfitting: fitting a model to a particular training data set does
not guarantee good prediction performance on unseen test data.

@ If you train the net for too long, then you run the risk of overfitting.
@ Lack of sufficient training data increases the risk of overfitting.

@ Example: consider a single neuron with 5 inputs and the following
training set:

2 T ry X5 || Y ‘ ~ -
L 1 o0 o0 o0]z2] Y= Z Wi~ Ly
2 0 1 0 0|4 i=1
3 0 0 1 0|6
40 0 0 18 W = [2,0,0,0,0] corect

[[) 2,4,6, 8} Overfitted

50

Avoid Overfitting

@ One possible approach is to reduce the size of the network.

e However, large networks have the potential to be more powerful
than small networks.

51

Avoid Overfitting

@ One possible approach is to reduce the size of the network.

e However, large networks have the potential to be more powerful
than small networks.

@ Provide more training samples (not always possible).

51

Avoid Overfitting

@ One possible approach is to reduce the size of the network.

e However, large networks have the potential to be more powerful
than small networks.

@ Provide more training samples (not always possible).
@ Stop learning before overfitting happens.

51

Avoid Overfitting

@ One possible approach is to reduce the size of the network.

e However, large networks have the potential to be more powerful
than small networks.

@ Provide more training samples (not always possible).
@ Stop learning before overfitting happens.

@ Use regularization terms to dynamically adjust network
complexity.

51

Avoid Overfitting

One possible approach is to reduce the size of the network.

e However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).
Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.

51

Avoid Overfitting

One possible approach is to reduce the size of the network.

e However, large networks have the potential to be more powerful
than small networks.

Provide more training samples (not always possible).
Stop learning before overfitting happens.

Use regularization terms to dynamically adjust network
complexity.

Use ensemble methods.

use random dropout technique for hidden neurons.

51

Regularization

@ Since a larger number of parameters causes overfitting, a natural
approach is to constrain the model to use fewer non-zero
parameters.

@ The most applied regularization is adding the penalty A||W|| to
the loss function .

1
L= (r =y +MW]|

@ Therefore the learnin rule is re-written as:
Aw,-j = T].A,'.)Cj.q)/(a,') — T]}\.WU

52

Early stopping method of training

@ Split training samples into a training set (80%) and a validation

set (20%).

Mean-
squared
Crror

@ Stop learning when the loss decreases on train set but increases

on validation set.

Validation
sample
| Early Training
stopping sample

point

Number of epochs

53

Dropout or Dropconnect
@ Temporarily inactivate some of the hidden layer neurons
(Dropout) or some of their weights(Dropconnect).

@ These methods act like training multiple network inside one
network (to decrease overfitting and increase genralization)

Mean- Validation
squared sample
Crror
Early Training
stopping sample

point

Number of epochs

54

The Vanishing and Exploding Gradient

While increasing depth often reduces the number of parameters,
the chain rule can cause in vanishing or exploding gradients.

A sigmoid activation often encourages the vanishing gradient
problem, because its derivative is less than 0.25.

A ReLU activation unit is known to be less likely to create a
vanishing gradient problem because its derivative is always 1 for
positive values of the argument.

Adaptive learning rates and conjugate gradient methods are
other solutions.

55

Importance of Learning Rate

0.01

50

56

Learning mode

There are two basic modes of updating weights:

@ The pattern mode in which weights are updated after the
presentation of a single training pattern,

o ltis easier to fit into memory.

e For larger datasets it can converge faster.

e Due to frequent updates the steps taken towards the minima of
the loss function have oscillations which can help getting out of
local minimums.

@ The batch mode in which weights are updated after a batch of
patterns.

@ Less oscillations and noisy steps taken towards the global minima.

e It can benefit from vectorization which increases the speed of
processing.

e It produces a more stable gradient descent convergence.

57

